skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Di Francesco, Philippe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Alexeev, A.; Frenkel, E.; Rosso, M.; Webster, B.; Yakimov, M. (Ed.)
    We propose solutions of the quantum Q-systems of types BN,CN,DN in terms of q-difference operators, generalizing our previous construction for the Q- system of type A. The difference operators are interpreted as q-Whittaker limits of discrete time evolutions of Macdonald-van Diejen type operators. We conjecture that these new operators act as raising and lowering operators for q-Whittaker functions, which are special cases of graded characters of fusion products of KR- modules. 
    more » « less
  2. null (Ed.)
    We consider the triangular lattice ice model (20-Vertex model) with four types of domain-wall type boundary conditions. In types 1 and 2, the configurations are shown to be equinumerous to the quarter-turn symmetric domino tilings of an Aztec-like holey square, with a central cross-shaped hole. The proof of this statement makes extensive use of integrability and of a connection to the 6-Vertex model. The type 3 configurations are conjectured to be in same number as domino tilings of a particular triangle. The four enumeration problems are reformulated in terms of four types of Alternating Phase Matrices with entries $$0$$ and sixth roots of unity, subject to suitable alternation conditions. Our result is a generalization of the ASM-DPP correspondence. Several refined versions of the above correspondences are also discussed. 
    more » « less
  3. We use the tangent method to compute the arctic curve of the Twenty-Vertex (20V) model with particular domain wall boundary conditions for a wide set of integrable weights. To this end, we extend to the finite geometry of domain wall boundary conditions the standard connection between the bulk 20V and 6V models via the Kagome lattice ice model. This allows to express refined partition functions of the 20V model in terms of their 6V counterparts, leading to explicit parametric expressions for the various portions of its arctic curve. The latter displays a large variety of shapes depending on the weights and separates a central liquid phase from up to six different frozen phases. A number of numerical simulations are also presented, which highlight the arctic curve phenomenon and corroborate perfectly the analytic predictions of the tangent method. We finally compute the arctic curve of the Quarter Turn symmetric Holey Aztec Domino Tiling (QTHADT) model, a problem closely related to the 20V model and whose asymptotics may be analyzed via a similar tangent method approach. Again results for the QTHADT model are found to be in perfect agreement with our numerical simulations. 
    more » « less